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A Reflection Coefficient Approach to the
Design of One-Port Negative Impedance
Oscillators

DANIEL J. ESDALE anp MICHAEL J. HOWES

Abstract— A technique for analyzing microwave oscillators is presented
which utilizes readily available device and circuit reflection coefficient
information to predict oscillation conditions, stability, and noise perfor-
mance. The flowgraph approach used yields simple equations which may be
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readily applied in practice. A graphical interpretation is presented which
emphasizes the ease of application of the method proposed.

INTRODUCTION

N 1969 Kurokawa [1] published a generalized analysis of

negative-resistance oscillators. This work provided the
basic ideas utilized by others in subsequent analyses, and
provided the stimulation for this work.

0018-9480,/81 /0800-0770$00.75 ©1981 IEEE
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Ht)=B(t)castot+a(t))

Riw)+ X (w)
R(B}) + 1 X(B)
eft) 1
Fig. 1. Oscillator model proposed by Kurokawa.

Kurokawa postulated that if a current waveform
i(t)=B(t)cos(wt+6(1)) (1

flowed through an impedance then the voltage developed
across it may be given as

v=Re{IZ(w’)} ()

where I is the notation of i(¢z) in the form Be/(“**% and
Z(w") is the frequency-domain representation of the im-
pedance with functional dependence on a transformed
frequency variable

, dg .1 dB
W=et = —jp (3)
B(¢) and 6(¢) are assumed to be slowly varying functions
of time and may be interpreted as noise modulations in
amplitude and phase of the signal at frequency w.

For the situation depicted in Fig. 1 with device parame-
ters which are time-averaged functions of signal amplitude
only (R(B), X(B)) and circuit parameters which are solely
frequency dependent (R(w), X(w)), differential equations
in B(t) and 6(:) were formulated. Conditions on the
interrelation between the device and circuit parameters
necessary for oscillation were derived as

R(w)+R(B)=0
X(w)+X(B)=0 (4)
where for a negative impedance device R(B) will be a

negative quantity. The oscillations at frequency «, and
amplitude B, will be stable if and only if

4R dX _dX 4R -
dB |Bydw e, dB|Bdw e,
Further the frequency spectra of the amplitude-modulation
noise and phase-modulation noise are given as
2|Z"(wy)|le]?

8B(w)|%= 6

195(e) 2 Z(0y)]* (_‘!Bﬁ_ﬂ@)zw‘z ©
| Z'(wo)| dB dw dB dw] 170
20e]*

50

|80(w)|? = (B

1z + 5| R )+ (D]

dR dX dX dR\*
2 ’ 4 bl — i 2
w !Z(“’o)| +(dB dw dB dw) |B0|
where |e|? is the squared magnitude of the intrinsic white-

™
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noise generator and

B P

These expressions have proved to be useful in first-order
oscillator analysis. However, this approach utilizes voltage,
current, and impedances all of which may not be directly
measured at microwave frequencies. In this paper, a similar
theory in terms of incident and reflected traveling waves
and scattering parameters is developed. It is felt that in
addition to utilizing measurable microwave quantities, the
method developed here, essentially a flowgraph approach,
is more amenable to extension to more complicated oscilla-
tor structures and is presently being refined to investigate
noise aspects in GaAs MESFET oscillators.

FLow GRAPH METHOD

To utilize a flowgraph approach, we define a normalized
wave sinusoidal in space and time incident on an arbitrary
impedance, Z, in terms of the phasor voltage and current
across and through Z

©)

a=3

L+1@).

VZ,
Similarly, the reflected wave may be defined

Y iz

1z

b= (10)

Bf—

where the ratio of b to a is the reflection coefficient, T', of
the impedance. Employing (9) and (10) we find the usual
relationship for I as

zZ-Z,

T=z7z"

(11)

This linear transformation between Z(w) and I'(w) will
continue to hold when the functional dependence of Z(w)
is altered due to the nonsinusoidal current (1). However,
the linear relationship between a, b,V, I through (9) and
(10) suggests that we may represent the time-domain inci-
dent wave in the form :

a(t)=A(t)cos[Qt+¢(t)] (12)

and we postulate that the reflected wave may be given by a
“circuit law” analogous to (2)

L iﬁ)]. (13)

b(t)=Re [Ae/(“"*"’)T(

dt A dt
Note that we modify the functional dependence of I'(w) to
dp . 1dA
F( “tar Taa )
and not to
dé .1 dB
1‘( “t % B 7)

This basic postulate will now be employed to develop an
analysis of an oscillator comprising a frequency-invariant
active device and a generalized circuit with reflection coef-
ficient T,.
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q ay

Fig. 2. Flowgraph model of active device including noise wave
generator.

b, ! I

o)
~J

7 be
Fig. 3.

Flowgraph model of oscillator used in this study.

A single wave generator is introduced which models the
noise mechanisms within the active device, this is denoted
as b, in Fig. 2.

The total wave incident on the device is given as

(14)

ap=a,tb,
and the reflected wave
bx:bD:rD(ax+bn) (15)
ie.,

(16)

Now if the total wave incident on the device is represented
as

bp=Ipap.

ap(1)=A(t)cos [t +¢(r)] (17)

then we postulate that the device reflection coefficient
which relates b, to a,, is a time-averaged function of the
amplitude 4 and is denoted as I'(A).

As the signal amplitude, 4, increases then the level of
harmonics in b, will increase. However, we may continue
to define a linear operator I';(A4) which relates the funda-
mental component of b, to a fundamental component of
ap. If the device is loaded with a reflection coefficient
which is nonzero at its fundamental and harmonic frequen-
cies then the returned incident wave a, will contain
harmonic components. The linear operator, I';,, relating the
fundamental component in b, to the fundamental in a,, is
then a function of the time-averaged amplitudes of the
fundamental and all-harmonic components in a;. In this
analysis, we assume that the device is loaded by a reflec-
tion coefficient of zero, i.e., terminated in Z; at all harmonic
frequencies.

If we couple the device and noise generator to the circuit
of Fig. 3 then

ap=b,+T.b,
ap=b,+T.Ipa,

(18)
(19)

the total wave incident on the device in the “closed-loop”

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. MTT-29, No. 8, AUGUST 1981

regime is given by
aD[l —rc(w)rD(A)] =b,

assuming the amplitudes of the harmonics are small.

If a quasi-sinusoidal waveform for ap(¢) is assumed
which is noise modulated in phase and amplitude, we must
modify the system equation to include (13). This procedure
gives

(20)

Re {Aef<°°f+¢>[1 —I‘D(A)l“c( w+ %‘? —j% 31% )] } =b,(1).
(21)

If the investigation is restricted to cases in which d¢ /dt
< w and (1/4)(dA /dt)< w, normally valid except in tran-
sient situations, the circuit reflection coefficient may be
expanded and then truncated to the first term in a Taylor
series, thus

(22)

Since reflection coefficients are normally represented in
polar form we may define

T(@)=n(w)e (23)
Tp(4)=p(4)e ™ (24)
then
dr dn . di]
Zc i 2L Zs
do € [dw e |- (25)
The “closed-loop” equation (21) is modified to
_ dn d¢ iéld_A)
Acos(wt+¢>)[l pcos(0+§)(n+ T dr +"1de 7l

. dé¢ d dn 1 dA
—l—psm(ﬂ-i—i)(nﬁ—d?—zgzz)]

. . dn d dé 1 d4
+Asm(wt+¢)[psm(€+§)(n+EZ—T(f—kn;i—i-zw)
dé d¢ dn 1 dA

Focos(0+0) w40 )
=bp(1). (26)
We may remove the high-frequency and harmonic depen-
dence to investigate the modulations by multiplying by
cos(wt+¢) and integrating over one period, 7, and simi-

larly with sin(wz+¢). This yields two coupled differential
equations

_pd% _pladd_
P0G ~RY 3 =" (27)
_R9e _,ladd_
S—REL 0= "0 =n,. (28)
The coefficients are
P=1—pncos(8+¢)
S=pnsin(6+¢)
_ an _ g 3
Q—pcos(0+§)dw pns1n(0+§)dw
. dn d
R=psin(6+8) 9L+ preos(9+£) = (29)
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and
21 e
=g b(t)cos(wt+q>)dt
2 1 471
np=— b,(t)sin(wt+¢)dt (30)
A4 Ty,

where n, and n, are orthogonal noise components such
that n n% =n%nz=0.
OSCILLATION CONDITIONS

When we place the noise source to zero and investigate
the steady-state situation, i.e., d4 /dt and d¢/dt, both zero
in (27) and (28), then

1—pncos(8+¢)=0
pnsin(+¢)=0.
These conditions are simultaneously satisfied if
0=—¢

(31)

and
p=1/1. (32)

From the definitions (23) and (24) we identify the require-
ment

FCZI/FD

for steady-state oscillation.

(33)

StABILITY CONDITIONS

The stability of any oscillation may be investigated by
perturbing the amplitude and phase about the operating
amplitude, 4,, and frequency, w,, and noting if the per-
turbation decays with time or shifts to some other valid but
stable operating point, w,, 4,. If the amplitude is perturbed
by 84 then the device parameters at (A, +34) may be
given by a linear approximation, the first terms in a Taylor
series expansion about the operating point

T
Tp(Ag +84)=Tp(Ao)+— d D8A
=pe/9+e10[$ + psj]b‘A. (34)

The coefficients in the differential equations (27) and (28)
are modified due to this change and in particular we
replace pcos 8 by

dp de
pcos 0+[dA cos 61— I sm0] 84 (35)
and psiné by
9+[“’ ing+p %0 o] 84. (36)
psin — Sinf+p_= cos

Utilizing this and the oscillation conditions (31) which
exist at w,, 4, it can be shown that the coefficients in the
differential equations become

d

P'=—q dP o4
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and
L iﬂé&_ﬁ’éﬁiﬁ_]
Q“’d [dwdA do da |4
,_ d§ dndf | d§ dp]
R= et Paoaa Tawaa|® 7

Differential equations in §4 and 8¢ alone may be obtained
from (27) and (28).

1 d(84)

(RP'+Q'S)— (R'2+Q'2) .

=R'n,;+Q'ng

(38)

(¢)

(Q/P/___R/S/) (R12 +Ql2) _Q/nA

—R'nyg.
(39)

Since (R’*+Q’?) is always positive then the amplitude
perturbation will decay if
R'P'+ Q'S <0. (40)
Thus we require that the device and circuit have parame-
ters which fulfill

(41)

at the operating point wy, 4, if any oscillation predicted by

(33) is to be stable.

GRAPHICAL INTERPRETATION

Kurokawa [1] and Kenyon [2] provided a graphical
insight into the oscillation stability and noise performance
derived by Kurokawa. They primarily investigated the
intersection of the impedance locus of the circuit as a
function of frequency with the negative of the impedance
locus of the device with amplitude as parameter, (see Fig.
4).

In the reflection coefficient plane, a negated impedance
is equivalent to the inverse reflection coefficient. We, there-
fore, explore the intersection of the locus of the circuit
reflection coefficient I', with the inverse locus of the device
reflection coefficient I'j,.

It is true that the conditions which we derive below
could be trivially arrived at by employing Kurokawa and
Kenyon results and invoking the angle preserving nature of
the conformal mapping which relates T'(w) to Z(w), (11).
However, this approach would investigate stability of the
current waveform within the circuit by exploring 6B and
86, see (1). Now, since the wave, a, is linearly related to
this current through (9) then stability of current oscillation
and conditions for minimum current noise will correspond
to stable wave oscillation and minimum noise thereof.

The method here which explores stability and noise
performance of the wave through 84 and 8¢ yields graphi-
cal interpretation which agrees with those derived by in-
voking the conformal-mapping argument discussed above.
This check gives some confidence in this new approach and
justification for further development of this theory.
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JX

0> @,
BL> BL—u

R

Fig. 4. Circuit impedance locus as a function of frequency and negated
device impedance locus as a function of signal amplitude.

X
dZC/dw

d42,/dB

Z

stable 1f 0 « y < 180

minimum noise y=90°

(b)

Fig. 5. (a) Conditions on the intersection of the circuit and device loci 1n
the Z-plane. (b) Circuit locus and inverse device locus in the reflection
coefficient plane.

Fig. 5(a) represents the loci intersection in the Z-plane
and indicates the conditions necessary for stability of oscil-
lation at w,, B, and conditions for minimum noise perfor-
mance. Fig. 5(b) investigates the intersection of equivalent
loci expressed as vectors in the reflection coefficient plane.

Denoting the inverse device reflection coefficient as
Ty '=re/® (42)
where
=1/p
Q=—0 (43)
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we may transform the stability condition (41) by noting

dp _dpdr . df_ d6dQ
dA ~ dr dA d4 ~— d9Q dA
_ 1 ar __de
T ,2d4 T dAd (44)
dr d§¢ dn dQ
A do  doad ¥ (45)

We identify these terms as cross coupling of the compo-
nents of the vectors which are tangential to the circuit and
device loci at the operating point. If we represent these
vectors in a cylindrical coordinate system as

d(T,) _dn,, d€

e " de <{>+Oz (46)
dT") 4. a9, . .
A —d—Ar+ d—A¢+Oz (47)
then, in fact, we identify (45) as
dr,) ., drs")
o 0 (48)
since the compact form of cross product
ar)  d(,") _| 7 ¢z
do u_ dn/de df/dw 0
dr/dA dQ/dAd 0
d(T
- |45 H———‘ siny  (49)
may be employed. This is because
d(T.) d(Ty")
dw dA

are fixed vectors operating through the same point and the
orientation of the unit vectors is the same, at that point in
space, for T, T;'!, and their resultant product.

Thus we identify stable oscillation as siny>0, i.e., 0<y
< 180° which may be compared with Fig. 5(a).

NOISE ANALYSIS
If in (38) and (39) we identify the perturbations 04, 8¢
as amplitude-modulated and phase-modulated noise gener-
ated by the interaction of b,(¢) with the circuit and device
we may solve for the noise spectra of the overall oscillator.
Modifying (38) and (39) to include the inverse device
reflection coefficient parameters we now identify

(R’2+Q’2):(%Z—Z)2+(g§)z (50)

and
ol o
-l 2] e
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whence
1 |d(T,) |?
2 72
(R?+07)= nz o (53)
Further
P4 O _ii_i_i@_d_ﬂ]
(RP'+Q'8)= [dwdA 1 4o | 4 (54)
pr_preny—| L dr dn | df d2
(Q'P'—R'S)= [ 2dAdw+dwdA]6A' (55)
Thus (38) and (39) become
lf&_@_i@ﬂ] _1
Aon[dwdA A dw | ,,2
L drdy dgd9
[n2dAdw+dwdA]8A 7

Taking the Fourier transform of (56), rearranging, and
examining the modulus squared

|Ao|2|R"‘A"’Q'”B‘2

|84(w)|* = .
4 zi(iéir__zﬁd_n)z ar,
| 4] dwdA dA dw do

(58)

Now

|R'n g+ Q'np| > =(Rn g+ Q'np)(R*n +Q'*n3)
=R%|n,|*+Q"?|ng|? (59)
since '
n nh=n%ng=0.
Also

|n4|? =|ng|* =21b,|%/1 4,/
where |b,|* may be related to Kurokawa’s noise generator
le|? as
|6, |* =1e|*[1=Tp|*/4Z,|p| .

The amplitude-modulated noise spectrum at the modula-
tion frequency, w,,, is

m,

1|dT,
7l de 25,1
84(w,)|* =
' PRET PRI
o p\dedd dd de) T | de |
(60)

where (53) has been employed to simplify the numerator.
Employing (49), the denominator may be simplified yield-
ing

1%,
7 Ta 2lb |
84 (0= — 4
y |2 dr, dr;'f 1[dLp
0 dw dA 7 do| ™

(61)
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From this equation we note that the amplitude-
modulated noise spectrum is a function of the vectors
tangential to the circuit and inverse device loci. Indeed, the
interaction between the device and circuit reflection coeffi-
cients will produce a minimum in the amplitude-modulated
noise spectrum at all modulation frequencies when the
tangential vectors intersect orthogonally; this is identical to
the condition derived by Kurokawa and Kenyon for the
impedance loci.

To investigate the phase noise spectrum we take the
Fourier transform of (57) which yields after rearrangement,

1|d(T,)|Pd(84) . ,

do | —ar —RnatQ'ngld, (56)
d(T,) 2 d(5

Eiw) (dtqS ) =0 —Rng. (57)

squaring of the modulus, substitution of (58), (59), and
noting that the coefficients of Q’ and R’ are wholly real

b2
|8¢(w,)* = ———
m'AOl2
dI‘ ‘A 2t 1 dT.*
1,2 0 do| ™ ©)
62
dr, _dT;'|* 1|dT,|*
|A0‘2”1'2' : L T4 ; rzn
where we have also employed
arty ' 1Ll ar 2, (a9
wlAes@] e

Equation (62) indicates that the phase noise spectrum
depends on the vectors tangential to the circuit and device
loci in a similar manner to the amplitude-modulated noise.
The numerator in this expression is slightly more com-
plicated but, in general, good noise performance may be
achieved if

i) the circuit and inverse device loci intersect orthogo-

nally
) d(T,)| . .
ii) the value of |— is maximized
dw

1d@)7

iii) the value of is minimized.

7

CONCLUSIONS

In this paper we have developed a first-order one-port
negative resistance oscillator analysis utilizing the travel-
ing-wave concept and employing a reflection coefficient
description of the active device and circuit elements. This
approach has been undertaken since reflection coefficient
information is more readily available from manufacturers
data sheets or in presently available instrumentation sys-
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tems at microwave frequencies rather than impedance data.
Further, a wave approach to the problem enables more
complicated oscillator structures to be investigated through
the relatively easy application of Mason’s topological rules
to the flowgraph description.

From the investigation of a mildly nonlinear device /cir-
cuit interaction such that noise modulations pass linearly
around the oscillator we have derived formulas for oscilla-
tion condition and stability. Expressions for the amplitude
and phase noise of the oscillator have also been derived. A
graphical interpretation of these conditions has been pre-
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sented in terms of the circuit reflection coefficient and
inverse device reflection coefficient loci in a cylindrical
coordinate system. The results of this graphical investiga-
tion have been shown to be equivalent to those derived by
Kurokawa.
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RF Characterization of Microwave Power
FET’s

RODNEY S. TUCKER, MEMBER, IEEE

Abstract— The large-signal S-parameter S,, and the optimum load for
maximum output power are two parameters commonly used in the RF
characterization of microwave power FET’s. Using a nonlinear circuit
model of the device, the dependence on RF power of each of these
parameters is investigated. A method is given for computing the optimum
load from the large-signal S,,. Equivalent load-pull data can thus be
obtained without the need for load-pull measurements. The gain compres-
sion characteristics of the transistor for arbitrary load can be computed
from large-signal S,; and S, data.

I. INTRODUCTION

N THE ANALYSIS and design of GaAs FET power

amplifiers there is a need for data on device RF char-
acteristics at large-signal levels. Experimental methods for
obtaining these data fall into two main classes: large-signal
S-parameter measurements [1], [2] and load-pull measure-
ments [3]-[7]. Large-signal S-parameters are an extension
of the well-known small-signal S-parameters [8] and are
generally measured with fixed 50- terminations at the
device terminals. Load-pull measurements differ from
large-signal S-parameter measurements in that the termina-
tions are not held constant. The device is driven at a given
input power level and parameters such as output power [3]
or intermodulation distortion [7] are measured as a func-
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was supported by Telecom Australia, the Australian Radio Research
Board, and the Australian Research Grants Committee.

The author is with the Department of Electrical Engineering, University
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tion of the load admittance. A load-pull parameter which is
particularly useful in the design of power-amplifiers is the
optimum load admittance for maximum output power [3], [4].

The variable load admittance used in load-pull measure-
ments can be set up either using a tuner [3], [6] or with a
second signal injected at the output port of the device [4],
[5], [7]. Both of these loading techniques give circuit condi-
tions which closely resemble those the FET will experience
in an amplifier. Therefore, the main advantage of load-pull
data over large-signal S-parameter data is that they are
measured under realistic operating conditions. As a result,
load-pull data are well suited to analysis and design proce-
dures.

Large-signal S-parameter measurements are generally
easier and less tedious to implement than load-pull mea-
surements. In addition, large-signal S-parameters can be
readily measured on a swept-frequency basis. Unfor-
tunately, large-signal S-parameters are less useful than
load-pull data in circuit analysis and design. This problem
arises because small-signal S-parameters (and thus large-
signal S-parameters) are defined in terms of a linear two-
port network [8]. Under large-signal conditions, a micro-
wave transistor is nonlinear and large-signal S-parameters
cannot be used to predict the large-signal device perfor-
mance for terminations other than the fixed terminations
used during measurement. In addition, it is not clear what.
signal power level should be used for large-signal S-
parameter measurements.
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