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A Reflection Coefficient Approach to the
Design of One-Port Negative Impedance

Oscillators

DANIEL J. ESDALE AND MICHAEL J. HOWES

A bstract— A technique for analyzing microwave oscillators is presented readily applied in practice. A graphical interpretation is presented which

which utilizes readily available device and circuit reflection coefficient emphasizes the ease of application of the method proposed.

information to predict oscillation conditions, stability, and noise perfor-

mance. The flowgraph approach used yields simple equations which maybe
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Fig. 1. Oscillator model proposedby Kurokawa.

Kurokawa postulated that if a current waveform

i(t)= B(t)cos(tdt+f3(t)) (1)

flowed through an impedance then the voltage developed

across it may be given as

~=Re{~z(@’)} (2)

where 1 is the notation of i(t) in the form lle~(tit+ 6) and

2( o’) is the frequency-domain representation of the im-

pedance with functional dependence on a transformed

frequency variable

do .ldl?
@’=(J+—-]—-.

dt B dt
(3)

B(t) and 0(t) are assumed to be slowly varying functions

of time and may be interpreted as noise modulations in

amplitude and phase of the signal at frequency u.

For the situation depicted in Fig. 1 with device parame-

ters which are time-averaged functions of signal amplitude

only (R(B), X(B)) and circuit parameters which are solely

frequency dependent (R(o), X( o )), differential equations

in B(t) and 8(t) were formulated. Conditions on the

interrelation between the device and circuit pmameters

necessary for oscillation were derived as

R(Lo)+R(B)=O

X( U)+ X(B)=O (4)

where for a negative impedance device I?(B) will be a

negative quantity. The oscillations at frequency QO and

amplitude B. will be stable if and only if

dR dX dX dR >0—— —
dB lBodu lo. dB IBodultio “

(5)

Further the frequency spectra of the amplitude-modulation

noise and phase-modulation noise are given as

18B(u)12=
21z’(00j[2\,e[2

(6)
2! dR dX dX dR 21BOI’

@ lz(too)y+(~~–~~
)

21e12
lw@)12= J,BO,’

a2\Z’(coo)12+lBo12 [(~)2+(~)2] (7)

dR dX dXdR 21B012
LJ2\.Z’(LOO)14+(~~ dB dco

)

where ]e 12 is the squared magnitude of the intrinsic white-
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noise generator and

lz’(tio)[’=[(g) ’+(~)’]lwo. (8)

These expressions have proved to be useful in first-order

oscillator analysis. However, this approach utilizes voltage,

current, and impedances all of which may not be directly

measured at microwave frequencies. In this paper, a similar

theory in terms of incident and reflected traveling waves

and scattering parameters is developed. It is felt that in

addition to utilizing measurable microwave quantities, the

method developed here, essentially a flowgraph approach,

is more amenable to extension to more complicated oscilla-

tor structures and is presently being refined to investigate

noise aspects in GaAs MESFET oscillators.

FLOW GRAPH METHOD

To utilize a flowgraph approach, we define a normalized

wave sinusoidal in space and time incident on an arbitrary

impedance, Z, in terms of the phasor voltage and current

across and through Z

(9)

Similarly, the reflected wave may be defined

b=’(~-’~) ’10)
where the ratio of b to a is the reflection coefficient, I’, of

the impedance. Employing (9) and (1 O) we find the usual

relationship for I’ as

r= Z–z.
2+20- (11)

This linear transformation between Z(o) and r(u) will

continue to hold when the functional dependence of 2(u)

is altered due to the nonsinusoidal current (l). However,

the linear relationship between a, b, V, 1 through (9) and

(10) suggests that we may represent the time-domain inci-

dent wave in the form

a(t)= A(t)cos[cOt+@(t)] (12)

and we postulate that the reflected wave may be given by a

“circuit law” analogous to (2)

Note that we modify the functional dependence of r( a ) to

This basic postulate will now be employed to develop an

analysis of an oscillator comprising a frequency-invariant

active device and a generalized circuit with reflection coef-
ficient rc.
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Fig. 2. Flowgraph model of active deviceincluding noise wave
generator.
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Fig. 3. Flowgraph model of oscillator usedin this study.

A single wave generator is introduced which models the

noise mechanisms within the active device, this is denoted

as b. in Fig. 2.

The total wave incident on the device is given as

aD=ax+b~ (14)

and the reflected wave

bx=bD=rD(ax+b. ) (15)

i.e.,

bD=I’DaD. (16)

Now if the total wave incident on the device is represented

as

aD(t)=A(t)cos [tit+ f$(t)] (17)

then we postulate that the device reflection coefficient

which relates bD to aD is a time-averaged function of the

amplitude A and is denoted as rD(A).

As the signal amplitude, A, increases then the level of

harmonics in bD will increase. However, we may continue

to define a linear operator rD( A) which relates the funda-

mental component of bD to a fundamental component of

aD. If the device is loaded with a reflection coefficient

which is nonzero at its fundamental and harmonic frequen-

cies then the returned incident wave aD will contain

harmonic components. The linear operator, 17D,relating the

fundamental component in bD to the fundamental in aD is

then a function of the time-averaged amplitudes of the

fundamental and all-harmonic components in aD. In this

analysis, we assume that the device is loaded by a reflec-

tion coefficient of zero, i.e., terminated in 20 at all harmonic

frequencies.

If we couple the device and noise generator to the circuit

of Fig. 3 then

aD =b. +rCbc (18)

aD =b. +rcrDaD (19)

the total wave incident on the device in the “closed-loop”

regime is given by

aD[l–rc(ti)rJA) ]=b. (20)

assuming the amplitudes of the harmonics are small.

If a quasi-sinusoidal waveform for aD(t) is assumed

which is noise modulated in phase and amplitude, we must

modify the system equation to include (13). This procedure

gives

(21)

If the investigation is restricted to cases in which drp/dt

<<u and (1 /A)( dA/dt ) <<ti, normally valid except in tran-

sient situations, the circuit reflection coefficient may be

expanded and then truncated to the first term in a Taylor

series, thus

Since reflection coefficients are normally represented in

polar form we may define

rc(ti)=q(u)d$(”) (23)

I’D(A)=p(A)e~O(’@ (24)

then

(25)

The “closed-loop” equation (21) is modified to

=b.(t). (26)

We may remove the high-frequency and harmonic depen-

dence to investigate the modulations by multiplying by

cos ( at+ +) and integrating over one period, TO, and simil-

arly with sin (ut+ ~). This yields two coupled differential

equations

(27)

(28)

The coefficients are

P=l–pqcos(e+g)

S=p~sin(O+$)

Q=pcos(d+t)+ –pqsin(@+t)#

R=psin(/3+&)~ +pqcos(O+~)~ (29)
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andand

nA=;*J’+TO~.(t)cos(@~+@)~~
01

(30)

where n ~ and n ~ are orthogonal noise components such

that n~n~ =n~n~ =0.

OSCILLATION CONDITIONS

When we place the noise source to zem and investigate

the steady-state situation, i.e., dA/dt and dq$/dt, both zero

in (27) and (28), then

I–pqcos(e+&)=o

pqsin(O+~)=O. (31)

These conditions are simultaneously satisfied if

0=–[

and

p=l/TJ. (32)

From the definitions (23) and (24) we identify the require-

ment

rc = l/r~ (33)

for steady-state oscillation.

STABILITY CONDITIONS

The stability of any oscillation may be investigated by

perturbing the amplitude and phase about the operating

amplitude, A o, and frequency, tio, and noting if the per-

turbation decays with time or shifts to some other valid but

stable operating point, w,, A,. If the amplitude is perturbed

by &l then the device parameters at (z10 + 8A) may be

given by a linear approximation, the first terms in a Taylor

series expansion about the operating point

drDrD(~o+a~)=rD(Ao)+z&t

[ 1
6 @+.pfl &4.=peJe+eJ ~ J dA (34)

The coefficients in the differential equations (27) and (28)

are modified due to this change and in particular we

replace p cos 8 by

pcose+
[ 1$-cos O-p~sin8 8A (35)

andpsin O by

psinf3+
[ 1-&-sin O+p$cos O 8A. (36)

Utilizing this and the oscillation conditions (31) which

exist at U., AO it can be shown that the coefficients in the

differential equations become

Differential equations in 8A and &#Jalone maybe obtained

from (27) and (28).

(R’P’+QfSf)–(R’2 +Q’2)~ % =R’n~ +Q’n,

(38)

(Q’P’-R’S’)-(R’2 +Q’2)Y =Q’n. -R’n,.

(39)

Since (R’2 + Q’*) is always positive then the amplitude

perturbation will decay if

R’P’-i-Q’S’<O. (40)

Thus we require that the device and circuit have parame-

ters which fulfill

(41)

at the operating point tio, A. if any oscillation predicted by

(33) is to be stable.

GRAPHICAL INTERPRETATION

Kurokawa [1] and Kenyon [2] provided a graphical

insight into the oscillation stability and noise performance

derived by Kurokawa. They primarily investigated the

intersection of the impedance locus of the circuit as a

function of frequency with the negative of the impedance

locus of the device with amplitude as parameter, (see Fig.

4).

In the reflection coefficient plane, a negated impedance

is equivalent to the inverse reflection coefficient. We, there-

fore, explore the intersection of the locus of the circuit

reflection coefficient 17Cwith the inverse locus of the device

reflection coefficient rD.
It is true that the conditions which we derive below

could be trivially arrived at by employing Kurokawa and

Kenyon results and invoking the angle preserving nature of

the conformal mapping which relates r(o) to Z(a), (11).

However, this approach would investigate stability of the

current waveform within the circuit by exploring 8B and

86, see (l). Now, since the wave, a, is linearly related to

this current through (9) then stability of current oscillation

and conditions for minimum current noise will correspond

to stable wave oscillation and minimum noise thereof.

The method here which explores stability and noise

performance of the wave through 8A and 84 yields graphi-

cal interpretation which agrees with those derived by in-

voking the conformal-mapping argument discussed above.

This check gives some confidence in this new approach and

justification for further development of this theory.
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Fig. 4. Circuit impedance locus as a function of frequency and negated

device impedance locus as a function of sigrxd amplitude.
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Fig. 5, (a) Conditions on the intersection of the circuit and device loci m
the Z-plane. (b) Circuit locus and moerse dewce locus in the reflection
coefficient plane.

Fig. 5(a) represents the loci intersection in the Z-plane

and indicates the conditions necessary for stability of oscil-

lation at tiO, E$ and conditions for minimum noise perfor-

mance. Fig. 5(b) investigates the intersection of equivalent

loci expressed as vectors in the reflection coefficient plane.

Denoting the inverse device reflection coefficient as

r; 1E/.eJ~ (42)

where

r= l\p
fl=-e (43)

we may transform the stability condition (41) by noting

dp .&dr d8 d6’ dfi?——
~ dr dA ‘d dA = dtil dA

1 dr _ d!d—— — ——
rz dA dA

(44)

. .

dr d.$ d~ dti <O—— —— —
dA da dw dA ‘

(45)

We identify these terms as cross coupling of the compo-

nents of the vectors which are tangential to the circuit and

device loci at the operating Doint. If we remesent these. .
vectors in a cylindrical coordinate system as

then, in fact, we identify (45) as

since the compact form of cross product

d(rc)~ d(r;’) ~ +i

da dA
= dq/du d.f/du O

dr/dA dfl/dA O

(46)

(47)

(48)

_ d(rc) d(r;’)

do dA
siny (49)

may be employed. This is because

d(rc) ad d(r; l)
da dA

are fixed vectors operating through the same point and the

orientation of the unit vectors is the same, at that point in

space, for rc, r; 1, and their resultant product.

Thus we identify stable oscillation as siny >0, i.e., O<y

<180° which may be compared with Fig. 5(a).

NOISE ANALYSIS

If in (38) and (39) we identify the perturbations 8A, 80

as amplitude-modulated and phase-modulated noise gener-

ated by the interaction of b.(t) with the circuit and device

we may solve for the noise spectra of the overall oscillator.

Modifying (38) and (39) to include the inverse device

reflection coefficient parameters we now identify

@’2+Q’2)=(w+(a2 ’50)
and

(51)

J
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whence

(~’2+Q”)= 1 ‘(r.) 2

T’ ‘a “

(53)

Further

Thus (38) and (39) become
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From this equation we note that the amplitude-

modulated noise spectrum is a function of the vectors

tangential to the circuit and inverse device loci. Indeed, the

interaction between the device and circuit reflection coeffi-

cients will produce a minimum in the amplitude-modulated

noise spectrum at all modulation frequencies when the

tangential vectors intersect orthogonally; this is identical to

the condition derived by Kurokawa and Kenyon for the

impedance loci.

To investigate the phase noise spectrum we take the

Fourier transform of (57) which yields after rearrangement,

[

1 dr dq d.$ da 1 1 d(rc) 2 d(&#)) Q,nA _R1nB
———+ZZ 6A–——
f dA da

—=
?2 d“ dt

(57)

Taking the Fourier transform of (56), rearranging, and

examining the modulus squared

(58)

Now

lR’n~ +Q’n~l 2 =(R’n~ +Q’n~)(R’*n; -1-Q’*n;)

(59)=R’21n~12+Q’21n~\2

since

n~n$=n~n~=O.

Also

(n~\2=ln~12=21bn12/lA012

where Ib. 12 may be related to Kurokawa’s noise generator

\e12a5

lbn12=le1211-rD12/4zolrD12i

The amplitude-modulated noise spectrum at the modula-

tion frequency, 6J~, is

(60)

where (53) has been employed to simplify the numerator.

Employing (49), the denominator may be simplified yield-

ing

(61)

squaring of the modulus, substitution of (58), (59), and

noting that the coefficients of Q’ and R’ are wholly real

where we have also employed

$ 2=7[(++)’+(+)’].(63)

Equation (62) indicates that the phase noise spectrum

depends on the vectors tangential to the circuit and device

loci in a similar manner to the amplitude-modulated noise.

The numerator in this expression is slightly more com-

plicated but, in general, good noise performance may be

achieved if

i) the circuit and inverse device loci intersect orthogo-

nally
1 d(rc)

ii) the value of –— is maximized
q da

1 d(rD)-’
iii) the value of ~

dA
is minimized.

CONCLUSIONS

In this paper we have developed a first-order one-port

negative resistance oscillator analysis utilizing the travel-

ing-wave concept and employing a reflection coefficient

description of the active device and circuit elements. This

approach has been undertaken since reflection coefficient

information is more readily available from manufacturers

data sheets or in presently available instrumentation sys-
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terns at microwave frequencies rather than impedance data.

Further, a wave approach to the problem enables more

complicated oscillator structures to be investigated through

the relatively easy application of Mason’s topological rules

to the flowgraph description.

From the investigation of a mildly nonlinear device/cir-

cuit interaction such that noise modulations pass linearly

around the oscillator we have derived formulas for oscilla-

tion condition and stability. Expressions for the amplitude

and phase noise of the oscillator have also been derived. A

graphical interpretation of these conditions has been pre-

sented in terms of the circuit reflection coefficient and

inverse device reflection coefficient loci in a cylindrical

coordinate system. The results of this graphical investiga-

tion have been shown to be equivalent to those derived by

Kurokawa.
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RF Characterization of Microwave Power
FET’s

RODNEY S. TUCKER, ~MBER, IEEE

A fsstract— The large-signal S-parameter S22 and the optimum load for

maximum output power are two parameters commonly used in the RF

characterization of microwave power FET’s. Using a nonlinear circuit
model of the device, the dependence on RF power of each of these
parametersis brvesdgated.A method is given for computing the optimum

load from the large-signal S22. Equivalent load-pnll data can thus be

obtained without the need for load-pull measurements. The gain compres-

sion characteristics of the transistor for arbitrary load can be compnted

from Iarge-signaf S2~ and S22 data.

I. INTRODUCTION

I N THE ANALYSIS and design of GaAs FET power

amplifiers there is a need for data on device RF char-

acteristics at large-signal levels. Experimental methods for

obtaining these data fall into two main classes: large-signal

S-parameter measurements [1], [2] and load-pull measure-

ments [3]– [7]. Large-signal S-parameters are an extension

of the well-known small-signal S-parameters [8] and are

generally measured with fixed SO-Q terminations at the

device terminals. Load-pull measurements differ from

large-signal S-parameter measurements in that the termina-

tions are not held constant. The device is driven at a given

input power level and parameters such as output power [3]

or intermodulation distortion [7] are measured as a func-

Manuscript received July 28, 1980; revised March 5, 1981. This work
was supported by Telecom Australia, the Australian Radio Research
Board, and the Austrahan Research Grants Committee.

The author is with the Department of Electrical Engineering, University
of Queensland, St. Lucia, Brisbane, Qld. 4067, Australia.

tion of the load admittance. A load-pull parameter which is

particularly useful in the design of power-amplifiers is the

optimum load admittance for maximum output power ~3j, [4J

The variable load admittance used in load-pull measure-

ments can be set up either using a tuner [3], [6] or with a

second signal injected at the output port of the device [4],

[5], [7]. Both of these loading techniques give circuit condi-

tions which closely resemble those the FET will experience

in an amplifier. Therefore, the main advantage of load-pull

data over large-signal S-parameter data is that they are

measured under realistic operating conditions. As a result,

load-pull data are well suited to analysis and design proce-

dures.
Large-signal S-parameter measurements are generally

easier and less tedious to implement than load-pull mea-

surements. In addition, large-signal S-parameters can be

readily measured on a swept-frequency basis. Unfor-

tunately, large-signal S-parameters are less useful than

load-pull data in circuit analysis and design. This problem

arises because small-signal S-parameters (and thus large-

signal S-parameters) are defined in terms of a linear two-

port network [8]. Under large-signal conditions, a micro-

wave transistor is nonlinear and large-signal S-parameters

cannot be used to predict the large-signal device perfor-

mance for terminations other than the fixed terminations

used during measurement. In addition, it is not clear what

signal power level should be used for large-signal S-

parameter measurements.
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